Преобразователь 36 вольт 200 герц

В статье рассмотрена простая конструкция преобразователя для питания трехфазного асинхронного электродвигателя 36 В / 200 Гц / 90 Вт от сети

220В с использованием специализированной микросхемы драйвера полевых транзисторов.

Однажды мне поставили задачу разработать «бюджетный» сетевой источник питания машинки для стрижки овец, в которой установлен трехфазный асинхронный двигатель с номинальными параметрами 36 В / 200 Гц / 90 Вт. Так как регулирования скорости не требовалось, то принцип управления был выбран самый простой – трехфазный инвертор без ШИМ. В результате изысканий было разработано две работоспособных схемы преобразователя с аналогичными параметрами – одна с использованием программируемого микроконтроллера с прямым управлением ключевыми транзисторами, вторая – с генератором на дискретных элементах, но с использованием специализированного трехфазного драйвера, конструкция которой и будет рассмотрена ниже.

Основные технические характеристики источника питания:

    напряжение питания сети

220 В / 50 Гц;

  • потребляемая мощность – до 150 Вт;
  • выходное напряжение – трехфазное
  • 36В / 200 Гц;

  • номинальная выходная мощность – 90 Вт;
  • токовая защита от короткого замыкания в нагрузке с возможностью индикации срабатывания защиты;
  • включение/отключение нагрузки маломощным выключателем.
  • Описание схемы преобразователя

    Функционально источник питания состоит из двух блоков – блока питания и преобразователя. Вначале рассмотрим конструкцию преобразователя. Принципиальная электрическая схема преобразователя с использованием специализированного драйвера представлена на рисунке:

    Схема идентична описанной в статье В. Хрипченко «Управление 3-х фазными двигателями с помощью силовой электроники в однофазной сети» (Радиолюбитель — 2007, № 3) с тем отличием, что используется другая, более дешевая микросхема трехфазного драйвера типа IR21365S. Отличие ее от IR2130, кроме всего прочего, состоит в ином построении схемы токовой защиты. Так, ситуация срабатывание токовой защиты не останавливает работу драйвера полностью, а позволяет возобновить его работу через время, заданное RC-цепью, подключенной к выводу RCIN. Так как эта возможность в данном применении была бы вредной, пришлось пойти на хитрость. Дело в том, что при срабатывании токовой защиты логика схемы формирует низкий уровень на выводе RCIN для разряда конденсатора RC-цепи. Соединив выводы RCIN и EN (вход разрешения работы драйвера) получилось, что при срабатывании токовой защиты низкий уровень на выводе RCIN запрещает дальнейшую работу драйвера. Из этого состояния драйвер не может самостоятельно выйти, пока его не сбросишь, например, отключив питание выключателем SA1. В остальном схема включения драйвера типовая. Добавлены лишь резисторы R15, R17, R19 в цепях истоков ключевых транзисторов верхнего плеча для защиты их от скачков напряжения, возникающих при активно-индуктивном характере нагрузки. Возможность подключения индикатора срабатывания токовой защиты к выводу FLT имеется, но в этом варианте преобразователя не использовалась.

    Схема генератора и формирователя импульсов заимствована из ранее упомянутой статьи В. Хрипченко. Добавлена лишь цепь сброса регистра DD2, собранная на элементах R5, C4. Из-за ее отсутствия логика схемы формирователя не могла выйти на заданный режим, а выдавала одинаковые последовательности импульсов на всех выходах с частотой задающего генератора DD1. Для получения частоты управления 200 Гц задающий генератор DD1 должен формировать импульсы частотой 1200 Гц, что достигается подбором элементов С1 и R4.

    Питание схемы осуществляется с использованием интегральных стабилизаторов DA1, DA2. В этой схеме преобразователя было решено не использовать отдельный источник напряжения постоянного тока для питания схемы управления, а запитать ее от питающего напряжения = 50 В. В связи с тем, что интегральные стабилизаторы серии LM78xx не допускают подачу на их вход напряжения выше 38 В, перед стабилизатором DA1 установлен делитель напряжения, собранный на элементах R1, R2, VT1, снижающий питающее напряжение вдвое.

    Конструкция и детали преобразователя

    В конструкции преобразователя использованы выводные и SMD (1206) резисторы мощностью 0,25 Вт, выводные и SMD (0805) керамические конденсаторы. В качестве датчика тока R9 использован шунт, изготовленный из латунного провода диаметром 1 мм. Требования к диодам VD2-VD4 аналогичны требованиям к VD1 предыдущей схемы. Ключевые транзисторы VT2-VT6 – любые N-канальные с параметрами не хуже 100 В / 7 А. Удобно использовать транзисторы в изолированном корпусе. В качестве микросхемы DD1 можно использовать любой функциональный аналог (74хх175) или отечественные К555ТМ8, К1533ТМ8, К155ТМ8.

    Элементы преобразователя собраны на печатной плате из односторонне фольгированного стеклотекстолита размером 68 х 50 мм. Чертеж печатной платы приведен на рисунке (чертеж показан со стороны установки выводных компонентов):

    Некоторые места на плате предусматривают установку как выводных, так и SMD элементов. На плате имеется 3 перемычки, две из которых необходимо запаять до установки микросхемы DD2. Ключевые транзисторы расположены таким образом, чтобы попарно прикрепить их к алюминиевой пластине толщиной 3-4 мм. Если используются транзисторы не в изолированном корпусе, то транзисторы нижнего плеча необходимо электрически изолировать от радиатора. Печатные проводники, соединяющие +/- питания, стоки и истоки ключевых транзисторов рекомендуется умощнить, напаяв на них отрезки одножильного провода диаметром 0,3…0,5 мм.

    Конструкция блока питания для преобразователя

    Принципиальная электрическая схема блока питания показана на рисунке ниже:

    В блоке питания использован трансформатор типа ТС-180 от старого телевизора. Так как штатные обмотки трансформатора не позволяли получить необходимое питающее напряжение достаточной мощности, он был перемотан с использованием штатного провода следующим образом. Все обмотки, кроме 1-2 и 1’-2’ были аккуратно смотаны. Экранирующая обмотка снята для сматывания обмоток 2-3 (2’-3’), а затем восстановлена и посажена на корпус трансформатора. После этого на катушки намотаны следующие обмотки (в тексте указан измеренный диаметр провода, который не соответствует справочным данным трансформатора):

    • 1) 5-9, 5′-9′ – по 36 витков в 2 провода – один (ПЭЛ-0,64), смотанный с обмоток 2-3, 2′-3′, второй (ПЭЛ-0,47) – с обмоток 5-6, 5′-6′;
    • 2) 6-10, 10′-6′ – по 39 витков в 5 проводов – четыре (ПЭЛ-0,47) смотанных с обмоток 5-6, 5′-6′ плюс один (ПЭЛ-0,38) – с обмоток 7-8, 7′-8′;
    • 3) 12-7 – 10 витков в 5 проводов аналогично намотке обмотки 6-10;
    • 3) 8-11 – 50 витков провода ПЭЛ-0,41, смотанного с обмоток 11-12, 11′-12′.
    Читайте также:  Freenas логин и пароль по умолчанию

    Для получения мощного выходного напряжения = 50В обмотки 5-9 и 5′-9′ включены параллельно, а затем последовательно с обмотками 6-10 и 10′-6′. Обмотка 12-7 осталась не использованной. С ее помощью можно увеличить или уменьшить выходное напряжение на несколько вольт.

    Выпрямительным мостом на диодах VD2-VD5 выходное напряжение выпрямляется, а затем фильтруется конденсаторами C1, C2.

    Предохранитель FU1 служит для защиты от возгорания трансформатора в случае межвиткового замыкания в его обмотках. Предохранитель FU2 также необходим, так как схема токовой защиты от короткого замыкания в нагрузке не способна защитить устройство в случае пробоя сразу двух ключевых транзисторов одной фазы.

    Обмотка 8-11 и выпрямительный мост VD1 используются для формирования питающего напряжения схемы преобразователя на ПМК. В конструкции данного преобразователя эта обмотка не используется.

    Компоновка блоков устройства

    В авторской конструкции ключевые транзисторы преобразователя установлены на радиатор, изготовленный из алюминиевой пластины толщиной 3 мм и размером 60 х 60 мм. Выпрямительный мост VD1, диоды VD2-VD5 и конденсаторы С1, С2 блока питания закреплены на пластине из гетинакса, прикрепленной к трансформатору. К нему же прикреплена и плата преобразователя:

    Для удобства конструкции выключатель SA1, светодиоды, разъемы питания и предохранители выведены на переднюю панель. Вся конструкция размещена в подходящем корпусе (см. фото в начале статьи).

    Сборка и наладка

    Наладка схемы преобразователя сводится к установке частоты задающего генератора равной 1200 Гц (вывод 3 DD1) подбором элементов С1, R4. Цепь R5-C4 должна обеспечивать надежный сброс при включении питания регистра DD2. Если этого не произойдет, на всех выходах регистра будет меандр частотой 1200 Гц. В этом случае следует увеличить номиналы элементов этой цепочки. Параметры цепочки R9-C10 являются критичными, поэтому не рекомендуется изменять номиналы этих элементов, иначе микросхема драйвера может не запускаться.

    При установке шунтов указанного номинала и при нулевом сопротивлении резистора делителя, обозначенного звездочкой, ток срабатывания защиты будет минимальным и составит около 15 А в цепи = 50 В. Увеличением сопротивления резистора делителя, обозначенного звездочкой, можно этот ток увеличивать.

    В статье рассмотрена простая конструкция преобразователя для питания трехфазного асинхронного электродвигателя 36 В / 200 Гц / 90 Вт от сети

    220В с использованием специализированной микросхемы драйвера полевых транзисторов.

    Однажды мне поставили задачу разработать «бюджетный» сетевой источник питания машинки для стрижки овец, в которой установлен трехфазный асинхронный двигатель с номинальными параметрами 36 В / 200 Гц / 90 Вт. Так как регулирования скорости не требовалось, то принцип управления был выбран самый простой – трехфазный инвертор без ШИМ. В результате изысканий было разработано две работоспособных схемы преобразователя с аналогичными параметрами – одна с использованием программируемого микроконтроллера с прямым управлением ключевыми транзисторами, вторая – с генератором на дискретных элементах, но с использованием специализированного трехфазного драйвера, конструкция которой и будет рассмотрена ниже.

    Основные технические характеристики источника питания:

      напряжение питания сети

    220 В / 50 Гц;

  • потребляемая мощность – до 150 Вт;
  • выходное напряжение – трехфазное
  • 36В / 200 Гц;

  • номинальная выходная мощность – 90 Вт;
  • токовая защита от короткого замыкания в нагрузке с возможностью индикации срабатывания защиты;
  • включение/отключение нагрузки маломощным выключателем.
  • Описание схемы преобразователя

    Функционально источник питания состоит из двух блоков – блока питания и преобразователя. Вначале рассмотрим конструкцию преобразователя. Принципиальная электрическая схема преобразователя с использованием специализированного драйвера представлена на рисунке:

    Схема идентична описанной в статье В. Хрипченко «Управление 3-х фазными двигателями с помощью силовой электроники в однофазной сети» (Радиолюбитель — 2007, № 3) с тем отличием, что используется другая, более дешевая микросхема трехфазного драйвера типа IR21365S. Отличие ее от IR2130, кроме всего прочего, состоит в ином построении схемы токовой защиты. Так, ситуация срабатывание токовой защиты не останавливает работу драйвера полностью, а позволяет возобновить его работу через время, заданное RC-цепью, подключенной к выводу RCIN. Так как эта возможность в данном применении была бы вредной, пришлось пойти на хитрость. Дело в том, что при срабатывании токовой защиты логика схемы формирует низкий уровень на выводе RCIN для разряда конденсатора RC-цепи. Соединив выводы RCIN и EN (вход разрешения работы драйвера) получилось, что при срабатывании токовой защиты низкий уровень на выводе RCIN запрещает дальнейшую работу драйвера. Из этого состояния драйвер не может самостоятельно выйти, пока его не сбросишь, например, отключив питание выключателем SA1. В остальном схема включения драйвера типовая. Добавлены лишь резисторы R15, R17, R19 в цепях истоков ключевых транзисторов верхнего плеча для защиты их от скачков напряжения, возникающих при активно-индуктивном характере нагрузки. Возможность подключения индикатора срабатывания токовой защиты к выводу FLT имеется, но в этом варианте преобразователя не использовалась.

    Схема генератора и формирователя импульсов заимствована из ранее упомянутой статьи В. Хрипченко. Добавлена лишь цепь сброса регистра DD2, собранная на элементах R5, C4. Из-за ее отсутствия логика схемы формирователя не могла выйти на заданный режим, а выдавала одинаковые последовательности импульсов на всех выходах с частотой задающего генератора DD1. Для получения частоты управления 200 Гц задающий генератор DD1 должен формировать импульсы частотой 1200 Гц, что достигается подбором элементов С1 и R4.

    Питание схемы осуществляется с использованием интегральных стабилизаторов DA1, DA2. В этой схеме преобразователя было решено не использовать отдельный источник напряжения постоянного тока для питания схемы управления, а запитать ее от питающего напряжения = 50 В. В связи с тем, что интегральные стабилизаторы серии LM78xx не допускают подачу на их вход напряжения выше 38 В, перед стабилизатором DA1 установлен делитель напряжения, собранный на элементах R1, R2, VT1, снижающий питающее напряжение вдвое.

    Конструкция и детали преобразователя

    В конструкции преобразователя использованы выводные и SMD (1206) резисторы мощностью 0,25 Вт, выводные и SMD (0805) керамические конденсаторы. В качестве датчика тока R9 использован шунт, изготовленный из латунного провода диаметром 1 мм. Требования к диодам VD2-VD4 аналогичны требованиям к VD1 предыдущей схемы. Ключевые транзисторы VT2-VT6 – любые N-канальные с параметрами не хуже 100 В / 7 А. Удобно использовать транзисторы в изолированном корпусе. В качестве микросхемы DD1 можно использовать любой функциональный аналог (74хх175) или отечественные К555ТМ8, К1533ТМ8, К155ТМ8.

    Элементы преобразователя собраны на печатной плате из односторонне фольгированного стеклотекстолита размером 68 х 50 мм. Чертеж печатной платы приведен на рисунке (чертеж показан со стороны установки выводных компонентов):

    Читайте также:  Aquarius pro std elt series

    Некоторые места на плате предусматривают установку как выводных, так и SMD элементов. На плате имеется 3 перемычки, две из которых необходимо запаять до установки микросхемы DD2. Ключевые транзисторы расположены таким образом, чтобы попарно прикрепить их к алюминиевой пластине толщиной 3-4 мм. Если используются транзисторы не в изолированном корпусе, то транзисторы нижнего плеча необходимо электрически изолировать от радиатора. Печатные проводники, соединяющие +/- питания, стоки и истоки ключевых транзисторов рекомендуется умощнить, напаяв на них отрезки одножильного провода диаметром 0,3…0,5 мм.

    Конструкция блока питания для преобразователя

    Принципиальная электрическая схема блока питания показана на рисунке ниже:

    В блоке питания использован трансформатор типа ТС-180 от старого телевизора. Так как штатные обмотки трансформатора не позволяли получить необходимое питающее напряжение достаточной мощности, он был перемотан с использованием штатного провода следующим образом. Все обмотки, кроме 1-2 и 1’-2’ были аккуратно смотаны. Экранирующая обмотка снята для сматывания обмоток 2-3 (2’-3’), а затем восстановлена и посажена на корпус трансформатора. После этого на катушки намотаны следующие обмотки (в тексте указан измеренный диаметр провода, который не соответствует справочным данным трансформатора):

    • 1) 5-9, 5′-9′ – по 36 витков в 2 провода – один (ПЭЛ-0,64), смотанный с обмоток 2-3, 2′-3′, второй (ПЭЛ-0,47) – с обмоток 5-6, 5′-6′;
    • 2) 6-10, 10′-6′ – по 39 витков в 5 проводов – четыре (ПЭЛ-0,47) смотанных с обмоток 5-6, 5′-6′ плюс один (ПЭЛ-0,38) – с обмоток 7-8, 7′-8′;
    • 3) 12-7 – 10 витков в 5 проводов аналогично намотке обмотки 6-10;
    • 3) 8-11 – 50 витков провода ПЭЛ-0,41, смотанного с обмоток 11-12, 11′-12′.

    Для получения мощного выходного напряжения = 50В обмотки 5-9 и 5′-9′ включены параллельно, а затем последовательно с обмотками 6-10 и 10′-6′. Обмотка 12-7 осталась не использованной. С ее помощью можно увеличить или уменьшить выходное напряжение на несколько вольт.

    Выпрямительным мостом на диодах VD2-VD5 выходное напряжение выпрямляется, а затем фильтруется конденсаторами C1, C2.

    Предохранитель FU1 служит для защиты от возгорания трансформатора в случае межвиткового замыкания в его обмотках. Предохранитель FU2 также необходим, так как схема токовой защиты от короткого замыкания в нагрузке не способна защитить устройство в случае пробоя сразу двух ключевых транзисторов одной фазы.

    Обмотка 8-11 и выпрямительный мост VD1 используются для формирования питающего напряжения схемы преобразователя на ПМК. В конструкции данного преобразователя эта обмотка не используется.

    Компоновка блоков устройства

    В авторской конструкции ключевые транзисторы преобразователя установлены на радиатор, изготовленный из алюминиевой пластины толщиной 3 мм и размером 60 х 60 мм. Выпрямительный мост VD1, диоды VD2-VD5 и конденсаторы С1, С2 блока питания закреплены на пластине из гетинакса, прикрепленной к трансформатору. К нему же прикреплена и плата преобразователя:

    Для удобства конструкции выключатель SA1, светодиоды, разъемы питания и предохранители выведены на переднюю панель. Вся конструкция размещена в подходящем корпусе (см. фото в начале статьи).

    Сборка и наладка

    Наладка схемы преобразователя сводится к установке частоты задающего генератора равной 1200 Гц (вывод 3 DD1) подбором элементов С1, R4. Цепь R5-C4 должна обеспечивать надежный сброс при включении питания регистра DD2. Если этого не произойдет, на всех выходах регистра будет меандр частотой 1200 Гц. В этом случае следует увеличить номиналы элементов этой цепочки. Параметры цепочки R9-C10 являются критичными, поэтому не рекомендуется изменять номиналы этих элементов, иначе микросхема драйвера может не запускаться.

    При установке шунтов указанного номинала и при нулевом сопротивлении резистора делителя, обозначенного звездочкой, ток срабатывания защиты будет минимальным и составит около 15 А в цепи = 50 В. Увеличением сопротивления резистора делителя, обозначенного звездочкой, можно этот ток увеличивать.

    05.05.2018
    Автор Сообщение
    Becks

    «Радио» №2, 2000г.

    В. ПЫШКИН, г. Харьков, Украина
    Возникла необходимость собрать данную схему. При включении пробивает К155ИЕ4. Ваводы 5,6,7 относительно 10 ноги 15-23 Ома. Боков в печатке нет.Питание 5,1 вольт.

    kapral_82

    Проверьте правильность подачи питания на DD2,возможно перепутана полярность.Если с этими цепями все в порядке,подтяните на 5В выводы 6,7 DD2 через токоограничивающие резисторы 680 — 1кОм. ANATOLISTESLA

    Со схемой нужно что-то делать,ибо на VT1 падение 37[!] вольт,как минимум нужно ставить норм.стабилизатор по +5в. Becks

    Схему изменил. Намотал на транс доп.

    36 вольт, 200 герц — как сделать?

    обмотку на 5 вольт. Теперь не горит, но и не работает. На выв. 2 ДД1.1 — -200Гц, а на выв. 4 — 230 вместо 1200 ?

    Материалы этой статьи были опубликованы в журнале Радиоаматор — 2013, № 1

    В статье рассмотрена простая конструкция преобразователя для питания трехфазного асинхронного электродвигателя 36 В / 200 Гц / 90 Вт от сети

    220В с использованием специализированной микросхемы драйвера полевых транзисторов.

    Однажды мне поставили задачу разработать «бюджетный» сетевой источник питания машинки для стрижки овец, в которой установлен трехфазный асинхронный двигатель с номинальными параметрами 36 В / 200 Гц / 90 Вт. Так как регулирования скорости не требовалось, то принцип управления был выбран самый простой – трехфазный инвертор без ШИМ. В результате изысканий было разработано две работоспособных схемы преобразователя с аналогичными параметрами – одна с использованием программируемого микроконтроллера с прямым управлением ключевыми транзисторами, вторая – с генератором на дискретных элементах, но с использованием специализированного трехфазного драйвера, конструкция которой и будет рассмотрена ниже.

    Основные технические характеристики источника питания:

      напряжение питания сети

    220 В / 50 Гц;

  • потребляемая мощность – до 150 Вт;
  • выходное напряжение – трехфазное
  • 36В / 200 Гц;

  • номинальная выходная мощность – 90 Вт;
  • токовая защита от короткого замыкания в нагрузке с возможностью индикации срабатывания защиты;
  • включение/отключение нагрузки маломощным выключателем.
  • Описание схемы преобразователя

    Функционально источник питания состоит из двух блоков – блока питания и преобразователя. Вначале рассмотрим конструкцию преобразователя. Принципиальная электрическая схема преобразователя с использованием специализированного драйвера представлена на рисунке:

    Схема идентична описанной в статье В. Хрипченко «Управление 3-х фазными двигателями с помощью силовой электроники в однофазной сети» (Радиолюбитель — 2007, № 3) с тем отличием, что используется другая, более дешевая микросхема трехфазного драйвера типа IR21365S. Отличие ее от IR2130, кроме всего прочего, состоит в ином построении схемы токовой защиты. Так, ситуация срабатывание токовой защиты не останавливает работу драйвера полностью, а позволяет возобновить его работу через время, заданное RC-цепью, подключенной к выводу RCIN. Так как эта возможность в данном применении была бы вредной, пришлось пойти на хитрость. Дело в том, что при срабатывании токовой защиты логика схемы формирует низкий уровень на выводе RCIN для разряда конденсатора RC-цепи. Соединив выводы RCIN и EN (вход разрешения работы драйвера) получилось, что при срабатывании токовой защиты низкий уровень на выводе RCIN запрещает дальнейшую работу драйвера.

    Читайте также:  Как пройти уровень в игре мой дом

    трехфазный инвертор на 36 вольт 200Гц

    Из этого состояния драйвер не может самостоятельно выйти, пока его не сбросишь, например, отключив питание выключателем SA1. В остальном схема включения драйвера типовая. Добавлены лишь резисторы R15, R17, R19 в цепях истоков ключевых транзисторов верхнего плеча для защиты их от скачков напряжения, возникающих при активно-индуктивном характере нагрузки. Возможность подключения индикатора срабатывания токовой защиты к выводу FLT имеется, но в этом варианте преобразователя не использовалась.

    Схема генератора и формирователя импульсов заимствована из ранее упомянутой статьи В. Хрипченко. Добавлена лишь цепь сброса регистра DD2, собранная на элементах R5, C4. Из-за ее отсутствия логика схемы формирователя не могла выйти на заданный режим, а выдавала одинаковые последовательности импульсов на всех выходах с частотой задающего генератора DD1. Для получения частоты управления 200 Гц задающий генератор DD1 должен формировать импульсы частотой 1200 Гц, что достигается подбором элементов С1 и R4.

    Питание схемы осуществляется с использованием интегральных стабилизаторов DA1, DA2. В этой схеме преобразователя было решено не использовать отдельный источник напряжения постоянного тока для питания схемы управления, а запитать ее от питающего напряжения = 50 В. В связи с тем, что интегральные стабилизаторы серии LM78xx не допускают подачу на их вход напряжения выше 38 В, перед стабилизатором DA1 установлен делитель напряжения, собранный на элементах R1, R2, VT1, снижающий питающее напряжение вдвое.

    Конструкция и детали преобразователя

    В конструкции преобразователя использованы выводные и SMD (1206) резисторы мощностью 0,25 Вт, выводные и SMD (0805) керамические конденсаторы. В качестве датчика тока R9 использован шунт, изготовленный из латунного провода диаметром 1 мм. Требования к диодам VD2-VD4 аналогичны требованиям к VD1 предыдущей схемы. Ключевые транзисторы VT2-VT6 – любые N-канальные с параметрами не хуже 100 В / 7 А. Удобно использовать транзисторы в изолированном корпусе.

    В качестве микросхемы DD1 можно использовать любой функциональный аналог (74хх175) или отечественные К555ТМ8, К1533ТМ8, К155ТМ8.

    Элементы преобразователя собраны на печатной плате из односторонне фольгированного стеклотекстолита размером 68 х 50 мм. Чертеж печатной платы приведен на рисунке (чертеж показан со стороны установки выводных компонентов):

    Некоторые места на плате предусматривают установку как выводных, так и SMD элементов. На плате имеется 3 перемычки, две из которых необходимо запаять до установки микросхемы DD2. Ключевые транзисторы расположены таким образом, чтобы попарно прикрепить их к алюминиевой пластине толщиной 3-4 мм. Если используются транзисторы не в изолированном корпусе, то транзисторы нижнего плеча необходимо электрически изолировать от радиатора. Печатные проводники, соединяющие +/- питания, стоки и истоки ключевых транзисторов рекомендуется умощнить, напаяв на них отрезки одножильного провода диаметром 0,3…0,5 мм.

    Конструкция блока питания для преобразователя

    Принципиальная электрическая схема блока питания показана на рисунке ниже:

    В блоке питания использован трансформатор типа ТС-180 от старого телевизора. Так как штатные обмотки трансформатора не позволяли получить необходимое питающее напряжение достаточной мощности, он был перемотан с использованием штатного провода следующим образом. Все обмотки, кроме 1-2 и 1’-2’ были аккуратно смотаны. Экранирующая обмотка снята для сматывания обмоток 2-3 (2’-3’), а затем восстановлена и посажена на корпус трансформатора. После этого на катушки намотаны следующие обмотки (в тексте указан измеренный диаметр провода, который не соответствует справочным данным трансформатора):

    • 1) 5-9, 5′-9′ – по 36 витков в 2 провода – один (ПЭЛ-0,64), смотанный с обмоток 2-3, 2′-3′, второй (ПЭЛ-0,47) – с обмоток 5-6, 5′-6′;
    • 2) 6-10, 10′-6′ – по 39 витков в 5 проводов – четыре (ПЭЛ-0,47) смотанных с обмоток 5-6, 5′-6′ плюс один (ПЭЛ-0,38) – с обмоток 7-8, 7′-8′;
    • 3) 12-7 – 10 витков в 5 проводов аналогично намотке обмотки 6-10;
    • 3) 8-11 – 50 витков провода ПЭЛ-0,41, смотанного с обмоток 11-12, 11′-12′.

    Для получения мощного выходного напряжения = 50В обмотки 5-9 и 5′-9′ включены параллельно, а затем последовательно с обмотками 6-10 и 10′-6′. Обмотка 12-7 осталась не использованной. С ее помощью можно увеличить или уменьшить выходное напряжение на несколько вольт.

    Выпрямительным мостом на диодах VD2-VD5 выходное напряжение выпрямляется, а затем фильтруется конденсаторами C1, C2.

    Предохранитель FU1 служит для защиты от возгорания трансформатора в случае межвиткового замыкания в его обмотках. Предохранитель FU2 также необходим, так как схема токовой защиты от короткого замыкания в нагрузке не способна защитить устройство в случае пробоя сразу двух ключевых транзисторов одной фазы.

    Обмотка 8-11 и выпрямительный мост VD1 используются для формирования питающего напряжения схемы преобразователя на ПМК. В конструкции данного преобразователя эта обмотка не используется.

    Компоновка блоков устройства

    В авторской конструкции ключевые транзисторы преобразователя установлены на радиатор, изготовленный из алюминиевой пластины толщиной 3 мм и размером 60 х 60 мм. Выпрямительный мост VD1, диоды VD2-VD5 и конденсаторы С1, С2 блока питания закреплены на пластине из гетинакса, прикрепленной к трансформатору. К нему же прикреплена и плата преобразователя:

    Для удобства конструкции выключатель SA1, светодиоды, разъемы питания и предохранители выведены на переднюю панель. Вся конструкция размещена в подходящем корпусе (см. фото в начале статьи).

    Сборка и наладка

    Наладка схемы преобразователя сводится к установке частоты задающего генератора равной 1200 Гц (вывод 3 DD1) подбором элементов С1, R4. Цепь R5-C4 должна обеспечивать надежный сброс при включении питания регистра DD2. Если этого не произойдет, на всех выходах регистра будет меандр частотой 1200 Гц. В этом случае следует увеличить номиналы элементов этой цепочки. Параметры цепочки R9-C10 являются критичными, поэтому не рекомендуется изменять номиналы этих элементов, иначе микросхема драйвера может не запускаться.

    При установке шунтов указанного номинала и при нулевом сопротивлении резистора делителя, обозначенного звездочкой, ток срабатывания защиты будет минимальным и составит около 15 А в цепи = 50 В. Увеличением сопротивления резистора делителя, обозначенного звездочкой, можно этот ток увеличивать.

    Приложение

    Архив со схемами и чертежом печатной платы.

    Оцените статью
    Добавить комментарий

    Adblock
    detector