Решение уравнений алгоритм евклида

Этот алгоритм использует соотношения для НОД:

НОД(2*a, 2*b) = 2*НОД(a,b)
НОД(2*a, b) = НОД(a,b) при нечетном b,

Он иллюстрируется следующей программой:


Алгоритм решения уравнения ax+by = 1.

1.Определим матрицу E:

E =

2. Вычислим r — остаток от деления числа a на b, a=bq+r, 0 E *

5. Заменим пару чисел (a,b) на (b,r) и перейдем к шагу 2.


Расширенный алгоритм Евклида.

Алгоритм Евклида можно расширить так, что он не только даст НОД(a,b)=d, но и найдет целые числа x и y, такие что ax + by = d.

Псевдокод.

Исходник на Си.

Алгоритм работает за O(log 2 n) операций.


Нахождение обратного элемента по модулю

Для начала заметим, что элемент a кольца Zn обратим тогда и только тогда, когда НОД(a,n)=1. То есть ответ есть не всегда. Из определения обратного элемента прямо следует алгоритм.

Главная > Элективный курс

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Применение алгоритма Евклида для нахождения наибольшего общего делителя двух чисел (повторение).

Существует довольно простой прием, позволяющий находить наибольший делитель двух натуральных чисел. Этот прием называется алгоритмом Евклида. Вы с ним познакомились еще при изучении курса математики в 5 – 6 классах. Евклид, великий ученый, живший около 2000 лет назад, занимался не только геометрией, которая носит его имя. Ему принадлежит решение ряда важных задач арифметики и, в частности, тот способ нахождения наибольшего общего делителя, который мы сегодня будем использовать при изучении нового материала. А сейчас повторим суть алгоритма Евклида .

Чтобы найти наибольший общий делитель двух чисел:

1) надо большее из двух чисел разделить на меньшее;

2) потом меньшее из чисел на остаток при первом делении;

3) затем остаток при первом делении на остаток при втором делении и вести этот процесс до тех пор, пока не произойдет деление без остатка. Последний отличный от нуля остаток и есть искомый НОД двух данных чисел

Рассмотрим пример. Найти НОД (645; 381).

Разделим с остатком 645 на 381. Мы получим: 645=381·1+264.

Далее разделим с остатком 381 на 264, получим: 381=264·1+117.

Теперь разделим с остатком 264 на 117, получим: 264=117·2+30.

Продолжим процесс деления, разделим с остатком 117 на 30, получим: 117=30·3+27. Далее, 30=27·1+3. Следующий шаг – делим 27 на 3, получаем, что 27=3·9 +0, т. е. 27 делится на 3 без остатка. Значит, наибольший общий делитель чисел 27 и 3 равен 3, следовательно, и наибольший общий делитель чисел 645 и 381 равен 3, т. е. последнему отличному от нуля остатку.

Таким образом, НОД (645; 381) = 3.

Прием разыскания наибольшего общего делителя, примененный в этом примере, и представляет собой алгоритм Евклида.

2. Вывод формул для решения диофантовых уравнений с использованием алгоритма Евклида.

Прежде чем рассмотреть решение линейного уравнения с двумя неизвестными:

с использованием алгоритма Евклида, докажем утверждение о том, что наибольший общий делитель двух чисел есть последний отличный от нуля остаток в цепочке указанных в примере действий .

Чтобы доказать утверждение о наибольшем общем делителе, представим описанный процесс в виде следующей цепочки равенств: если a > b , то

·b = r 1 q 1 + r 2

r 1 = r 2 q 2 + r 3 (2)

r n – 1 = r n q n

Здесь r 1 , . . . , r n — положительные остатки, убывающие с возрастанием номера. Отсутствие остатка в последнем равенстве следует из того, что натуральные числа r n не могут убывать бесконечно, поэтому на некотором шаге остаток станет нулевым.

Обратимся к системе (2). Из первого равенства, выразив остаток r 1 через a и b , получим r 1 = a – b · q 0 . Подставляя его во второе равенство, найдём r 2 = b (1 + q 0 q 1 ) – a · q 1 . Продолжая этот процесс дальше, мы сможем выразить все остатки через a и b , в том числе и последний: r n = Aa + Bb . В результате нами доказано

что найдутся такие целые числа A и B , что d = Aa + Bb . Заметим, что коэффициенты A и B имеют разные знаки; если НОД ( a , b ) = 1 , то Aa + Bb = 1 . Как найти числа A и B , видно из алгоритма Евклида.

Перейдем теперь к решению линейного уравнения с двумя неизвестными:

Возможны два случая: либо число c делится на d = НОД( a , b ) , либо нет.

В первом случае можно разделить обе части уравнения на d и свести задачу к решению в целых числах уравнения a 1 x + b 1 y = c 1 , коэффициенты которого

a 1 = a / d и b 1 = b / d взаимно просты.

Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число ax + by делиться на d и поэтому не может равняться числу c , которое на d не делится.

Итак, мы можем ограничиться случаем, когда в уравнении (1) коэффициенты a и b взаимно просты. На основании предыдущего предложения найдутся такие целые числа х 0 и у 0 , что ax 0 + by 0 = 1 , откуда пара (сх 0 , су 0 ) удовлетворяет уравнению (1). Вместе с ней уравнению (1) удовлетворяет бесконечное множество пар ( x , у) целых чисел, которые можно найти по формулам

x = cx 0 + bt, y = cy 0 – at. (3)

Здесь t – любое целое число. Нетрудно показать, что других целочисленных решений уравнение ах + by = c не имеет. Решение, записанное в виде (3), называется общим решением уравнения (1). Подставив вместо t конкретное целое число, получим его частное решение.

Примечание . Название «лекция» как будто говорит о том, что активная роль здесь принадлежит лишь самому учителю, учащимся предоставляется пассивная роль – внимательно слушать рассказ учителя и выполнять в тетради те записи, которые учитель выполняет на классной доске. Если бы это было именно так, то данная форма обучения оказалось бы мало эффективной. Современные требования обучения математике предполагают, что даже в том случае, когда учитель является главным действующим лицом,
необходима активная деятельность самих учащихся. Поэтому лекция учителя должна пробуждать у учащихся интерес и потребность к активной умственной деятельности.

По ходу лекции следует обратиться с вопросами к учащимся . Например: Какие уравнения называются диофантовыми? Какой вид имеет линейное диофантово уравнение? Какие условия накладываются на его коэффициенты? Какой способ решения уравнения мы использовали на предыдущем занятии?

Читайте также:  Bitrix system auth authorize

Также на занятиях, где материал изучается крупным блоком, целесообразно создание таблицы в виде конспекта изложенного учителем нового материала. Этот конспект должен стать информационно-справочной таблицей и сыграть свою
роль на занятиях тематического или итогового повторения. Сформулируем некоторые требования к его оформлению. Материал в конспекте должен быть разделен на несколько самостоятельных, логически связанных между собой блоков. В него желательно внести вспомогательные вопросы, с помощью которых готовится введение нового, узловые вопросы темы и ее практическое применение.

Таким образом, с одной стороны, в конце урока желательно иметь конспект, в котором видно главное. А с другой стороны, запись этого конспекта не должна занимать много времени. Для выполнения этих требований можно использовать заготовку для конспекта, т.е. таблицу с пропусками. В нее можно внести рисунок без подписей, частично выполненные условия теоремы, некоторые пункты алгоритмических предписаний и т.п.

Как разработать такой конспект? Учитель сначала разрабатывает конспект полностью на листе бумаге стандартного размера. На другом таком же листе он выписывает конспект-заготовку в строгом расположении текста на основном конспекте. Этот фрагментарный конспект необходимо размножить, чтобы к лекции такой конспект-заготовку имел каждый ученик. Точно такой конспект «с пропусками» учитель должен заранее написать на доске
перед началом лекции или подготовить его компьютерный вариант для использования в классе с интерактивной доской. Для проведения данной лекции был подготовлен такой
конспект-заготовка (Приложение 4).

3. Примеры решения диофантовых уравнений с использованием алгоритма Евклида.

Рассмотрим решение заданий №6 (а), №7 из Приложения 1.

Задание №6 . Решить уравнение на множестве целых чисел

НОД(7;11)=1, Найдем значение х 0 и у 0 для получения решений уравнения по формулам (3). Применим алгоритм Евклида к числам 11 и 7:

Таким образом, получаем: , следовательно х 0 = –3, у 0 =2

Запишем общее решение уравнения на множестве целых чисел согласно формулам (3):

Придавая конкретные целые значения t , можно получить частные решения уравнения. Например, при t =1, имеем x = –196, у=131.

Задача №7 . Для газификации жилого дома требуется проложить газопровод протяженностью 150 м. Имеются трубы 13 м и 9м длиной. Сколько требуется труб, чтобы не приходилось их разрезать при прокладке газопровода.

Пусть требуется x труб по 9 м, и у труб по 13м. Составим и решим уравнение: 9х+13у=150.

НОД(9;13)=1, уравнение разрешимо во множестве целых чисел.

Найдем значение х 0 и у 0 для получения решений уравнения по формулам (3). Применим алгоритм Евклида к числам 13 и 9:

Запишем общее решение уравнения согласно формулам (3).

Так как x и y неотрицательные целые числа, то чтобы найти значение t , решим систему неравенств:

Ответ. Для прокладывания газопровода потребуется 8 труб длиной по 9м и 6 труб длиной по 13м.

4 . В домашнее задание для учащихся необходимо включить подготовку по теоретическому материалу и практические задания.

Учащиеся должны ответить на следующие вопросы.

В чем суть алгоритма Евклида?

Когда уравнение (1) разрешимо во множестве целых чисел?

По каким формулам находится общее решение диофантова уравнения первой степени с двумя переменными с использованием алгоритма Евклида? Укажите, что обозначают буквы, входящие в эти формулы.

При выполнении домашнего задания используется опорный конспект лекции, в котором выделены основные вопросы, рассмотренные на занятии, и заполнены соответственно имеющиеся пропуски (Приложение 4).

В качестве практических заданий можно предложить для решения задания №6 (б), №8 из Приложения 1. Также можно предложить составить сюжетную задачу, решение которой сводится к уравнению из №6 (б) на множестве целых неотрицательных или натуральных чисел. Найти ее решения.

Решение диофантовых уравнений с использованием алгоритма Евклида

Актуализация знаний ( проверка знания теории и выполнения практических заданий).

Решение задач с использованием алгоритма Евклида.

Постановка домашнего задания.

Оборудование: заполненные конспекты – заготовки предыдущей лекции, карточки с заданиями для фронтальной и групповой работы.

Актуализация знаний. Проведение первого этапа занятия – практикума учитель может спланировать по своему усмотрению. Необходимо организовать проверку выполнения домашнего задания, включающего как теоретические вопросы, так и практические задания.

Решение задач с использованием алгоритма Евклида .

Задания для решения выбираются по принципу: от простого к сложному. Для овладения методом решения диофантовых уравнений с использованием алгоритма Евклида можно предложить вначале решить уравнения, не связанные, с какой либо реальной ситуацией. Например, № 6 (в, г). Затем можно предложить решение текстовых задач на составление линейных диофантовых уравнений. Например, № 9, 10. Все задания указаны из Приложения 1. Задания можно выполнить в группах, а затем проверить полученные ответы. Ниже приведем решение задачи №9.

Неотъемлемой частью занятия – практикума является решение и нестандартных задач, заданий повышенной трудности. В процессе их выполнения можно использовать прием разбиения на подзадачи. К таким заданиям можно отнести и задачу № 11, которую мы далее рассмотрим.

Заметим, что в ходе решения задач, учащиеся могут опираться на заполненный опорный конспект предыдущей лекции, в котором выделен способ решения диофантовых уравнений с использованием алгоритма Евклида.

Задача №9. Транспортные организации имеют в наличие машины вместимостью 3, 5 т и 4, 5 т. Следует перевезти груз весом 53 т. Сколько машин нужно взять для одного рейса?

Пусть x машин по 3,5 т.; у машин по 4, 5 т. Составим и решим уравнение: 3,5х+4,5у=53. Перейдем к уравнению с целыми коэффициентами, например, умножим обе части уравнения на 2. Получим: 7х+9у=106.

НОД(7, 9)=1, уравнение имеет целые решения.

Так как t – принимает целые значения, то системе неравенств удовлетворяют значения t =-47 и t =-46. Получим решение диофантова уравнения в натуральных числах:

Читайте также:  Задача о восьми ферзях

Таким образом, для одного рейса можно взять:

А) 1 машину вместимостью 3,5 т и 11 машин вместимостью 4,5 т;

В) 10 машин вместимостью 3,5 т и 4 машины вместимостью 4,5 т.

Полезно обратить внимание на то, какой из возможных вариантов будет наиболее эффективным для работы предприятия с экономической точки зрения (экономия бензина, экономия средств на оплату труда водителям и т.д.) .

Задача №11 . Школа получила 1 млн. руб. на приобретение 100 единиц учебного оборудования (на всю сумму без сдачи). Администрации школы предложили, оборудование стоимостью 3000, 8000 и 12000 руб. за единицу. Сколькими способами школа может закупить это оборудование. Укажите один из способов.

В ходе обсуждения идеи решения данной задачи, необходимо выяснить: что дано, что неизвестно в условии, как связаны между собой данные и искомые. Затем переходить к составлению математической модели задачи.

1 ) составление системы уравнений .

Пусть приобретено x единиц оборудования по 12000 руб., y единиц оборудования по 8000 руб., z единиц оборудования по
3000 руб.

Всего приобретено 100 единиц оборудования, т.е. x + y + z = 100 , причем на приобретение 100 единиц оборудования затрачено 1 млн. руб., т.е.

12000 x + 8000 y + 3000 z = 1 000 000,

12x + 8y + 3z = 1000 .

Таким образом, получаем систему двух уравнений с тремя неизвестными:

Вопрос учителя: всегда ли задача будет иметь решение? Иначе: какими
должны быть x , y , z ?

( ответ: x >0, y >0, z >0 )

2) обсуждение решения системы.

Во-первых, исключим z , путем вычитания из второго уравнения первого, умноженного на 3. Следовательно, получаем диофантово уравнение 1-ой степени с двумя неизвестными 9 x + 5 y = 700.

Во-вторых, его можно решить способом с использованием алгоритма Евклида.

3) оформление решения задачи.

Так как уже получили уравнение, которое решается известным способом, то оформление решения можно предложить выполнить учащимся дома. В результате решения получается, что приобрести оборудование библиотека может шестью способами. Укажем одно из частных решений задачи: x=65 , y=23, z=12 , т.е. школа на 1 млн. руб. может
приобрести 65 единиц оборудования по 12 тыс. руб., 23 единицы оборудования по 8 тыс. руб., 12 единиц оборудования по 3 тыс. руб.

3. Постановка домашнего задания.

В качестве домашнего задания можно преложить учащимся решить задачи № 2; №3; №5 из Приложения 1 с использованием алгоритма Евклида.

Решение диофантовых уравнений с использованием

План занятия совпадает с планом школьной лекции на указанную тему.

Понятие цепной дроби. Представление рациональных чисел в виде цепной дроби

Формулы для решения диофантовых уравнений с использованием цепной дроби

Примеры решения диофантовых уравнений с использованием цепной дроби.

Оборудование: конспект – заготовка лекции на доске и индивидуальные заготовки для каждого ученика.

Занятие № 5 по своей структуре аналогично занятию №3. В качестве примеров решения диофантовых уравнений с использованием цепной дроби, можно рассмотреть задания из Приложения 1. Заметим, что можно взять уже ранее решенные задачи и выполнить их решение новым способом.

Понятие цепной дроби. Представление рациональных чисел в виде цепной дроби

Обратимся вновь к алгоритму Евклида. Из первого равенства системы (2) вытекает, что дробь a / b можно записать в виде суммы целой части и правильной дроби: . Из второго равенства той же системы имеем. Значит,

Продолжим этот процесс до тех пор, пока не придём к знаменателю q п

В результате мы представим обыкновенную дробь a / b в следующем виде: . Эйлер назвал дробь, стоящую в правой части равенства непрерывной . Приблизительно в тоже время в Германии появился другой термин – цепная дробь . Так за этими дробями и сохранились оба названия. Ввиду громоздкости развёрнутой записи цепной дроби применяют компактную запись

a / b = [ q 0 ; q 1 , q 2 , …, q п ] .

Представить рациональное число в виде цепной дроби.

.

Очевидно, что любое рациональное число, и только оно записывается в виде конечной цепной дроби. Иррациональным числам соответствуют бесконечные цепные дроби.

Если при построении цепной дроби остановиться на знаменателе q k , то получиться дробь [ q 0 ; q 1 , q 2 , …, q к ] , которую называют к-й подходящей дробью для искомой и обозначают Найдем вид некоторых подходящих дробей:

Для рационального числа a / b последовательность подходящих дробей конечна, и ее последний элемент Нетрудно заметить, что имеют место следующие рекуррентные соотношения:

(4)

Формулы для решения диофантовых уравнений с использованием цепной дроби

Вернемся к уравнению: ax + by = c (1). Напомним, что в нем a и b взаимно просты. Решение этого уравнения «способом цепной дроби» завершается применением готовых формул (доказательство которых можно найти в специальных пособиях), представляющих общее решение данного уравнения

(5)

Учебный проект выполнила ученица 8б класса Малютина Дарья.

В школьном курсе математики диофантовы уравнения не изучаются, но, например, в заданиях ЕГЭ встречаются диофантовы уравнения 2-ой степени, также уравнения часто встречаются и в олимпиадных задачах.

Значит, ученику для успешной сдачи ЕГЭ и решения олимпиадных задач нужно знать и теорию и методику решения диофантовых уравнений.

Просмотр содержимого документа
«Учебный проект " Алгоритм Евклида и линейные диофантовы уравнения.»

АЛГОРИТМ ЕВКЛИДА И ЛИНЕЙНЫЕ ДИОФАНТОВЫ УРАВНЕНИЯ

Выполнила: ученица 8 б класса

Учитель: Затеева Валентина Павловна

В школьном курсе математики диофантовы уравнения не изучаются, но, например, в заданиях ЕГЭ встречаются диофантовы уравнения 2-ой степени, также уравнения часто встречаются и в олимпиадных задачах.

Значит, ученику для успешной сдачи ЕГЭ и решения олимпиадных задач нужно знать и теорию и методику решения диофантовых уравнений.

ЦЕЛЬ И ЗАДАЧИ ПРОЕКТА

Цель: Научиться решать текстовые задачи, по которым можно составить деофантово уравнение.

  • Найти информацию о том, как был открыт алгоритм Евклида.
  • Узнать, где применяют диофантовы уравнения в наше время.
  • Изучить основные приёмы и методы решения линейных диофантовых уравнений в целых числах.

Евкли́д (от греч. «добрая слава» ) — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III в. до н. э.

Читайте также:  Dallas touch memory протокол

Алгори́тм Евкли́да — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел (или общей меры двух отрезков). Алгоритм назван в честь греческого математика Евклида (III век до н. э.), который впервые описал его . Это один из старейших численных алгоритмов, используемых в наше время.

В самом простом случае алгоритм Евклида применяется к паре положительных целых чисел и формирует новую пару, которая состоит из меньшего числа и разницы между большим и меньшим числом. Процесс повторяется, пока числа не станут равными. Найденное число и есть наибольший общий делитель исходной пары. Евклид предложил алгоритм только для натуральных чисел и геометрических величин (длин, площадей, объёмов). Однако в XIX веке он был обобщён на другие типы математических объектов. Это привело к появлению в современной общей алгебре такого понятия, как евклидово кольцо.

ОПИСАНИЕ АЛГОРИТМА НАХОЖДЕНИЯ НОД ДЕЛЕНИЕМ

1. Большее число делим на меньшее

2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла). Если есть остаток, то большее число заменяем на остаток от деления.

3. Переходим к пункту 1.

Найти НОД для 40 и 15.

40/15 = 2 (остаток 10)

15/10 = 1 (остаток 5)

10/5 = 2 (остаток 0).

Конец: НОД — это делитель. НОД (40, 15) = 5

ОПИСАНИЕ АЛГОРИТМА НАХОЖДЕНИЯ НОД ВЫЧИТАНИЕМ

1. Из большего числа вычитаем меньшее

2. Если получается 0, то значит, что числа равны друг другу и являются НОД (следует выйти из цикла)

3. Если результат вычитания не равен 0, то большее число заменяем на результат вычитания

4. Переходим к пункту 1

Найти НОД для 40 и 15.

5 — 5 = 0 Конец: НОД — это уменьшаемое или вычитаемое. НОД (40, 15) = 5

Диофант (Александрийский) – древнегреческий математик, живший в 3 веке до нашей эры. В своем основном труде "Арифметика", состоящем из 13 книг, он дал решение большого числа задач и, в частности, уравнений, которые теперь называют его именем.

Диофа́нтово уравнение — это уравнение вида P(x1, x2, . xn) = 0, где P(x1, . xn) — многочлен с целыми коэффициентами. Диофантовым уравнение названо в честь древнегреческого математика Диофанта. К решению подобных уравнений сводятся разнообразные текстовые задачи, в которых неизвестные величины выражают количество предметов того или иного рода и потому являются натуральными (или неотрицательными целыми) числами.

Общий вид линейного диофантова уравнения с двумя неизвестными: ax+by = c (числа a и b взаимно просты ).

Допустим, в аквариуме живут осьминоги и морские звёзды. У осьминогов по 8 ног, а у морских звёзд – по 5. Всего конечностей насчитывается 39. Сколько в аквариуме животных?

Решение. Пусть х — количество морских звёзд, у – количество осьминогов. Тогда у всех осьминогов по 8у ног, а у всех звёзд 5х ног. Составим уравнение: 5х + 8у = 39.

Заметим, что количество животных не может выражаться нецелым или отрицательным числами. Следовательно, если х – целое неотрицательное число, то и у=(39 – 5х)/8 должно быть целым и неотрицательным, а, значит, нужно, чтобы выражение 39 – 5х без остатка делилось на 8. Простой перебор вариантов показывает, что это возможно только при х = 3, тогда у = 3. Ответ: (3; 3)

В каталоге картинной галереи всего 96 картин. На каких-то страницах расположено 4 картины, а на каких-то 6. Сколько страниц каждого вида есть в каталоге?

Решение. Пусть х – количество страниц с четырьмя картинами, у – количество страниц с шестью картинами, тогда по условию этой задачи можно составить уравнение:4x+6y=96.

Решаем это уравнение относительно 4х, то есть:

Делим все уравнение на этот коэффициент:

Остатки при делении на 4: 1,2,3. Подставим вместо у эти числа.

Если у=1, то х=(96-6∙1):4=90:4 — Не походит, решение не в целых числах.

Если у=2, то х=(96-6∙2):4=21 – Подходит.

Если у=3, то х=(96-6∙3):4=78:4 — Не походит, решение не в целых числах.

Итак, частным решением является пара (21;2), а это значит, что на 21 странице расположено по 4 картины, а на 2 страницах по 6 картин.

3=7-4∙1. Выразим 4=3∙1+1, = 1=4-3∙1=4-(7-4∙1)=4-7+4∙1=4∙2-7∙1=1. Итак, получается х=1; у=2. А это значит, что молочный шоколад лежит в коробке по 1 штуке, а горький по 2 штуки. " w

В магазине продаётся шоколад двух видов: молочный и горький. Весь шоколад хранится в коробках. Молочного шоколада на складе имеется 7 коробок, а горького 4. Известно, что горького шоколада было на одну плитку больше. Сколько плиток шоколада находятся в коробках каждого вида?

Решение. Пусть х – количество плиток молочного шоколада в одной коробке, у – количество плиток горького шоколада в одной коробке, тогда по условию этой задачи можно составить уравнение:4у-7х=1.

Решим это уравнение, используя алгоритм Евклида.

Выразим 7=4∙1+3, = 3=7-4∙1.

Выразим 4=3∙1+1, = 1=4-3∙1=4-(7-4∙1)=4-7+4∙1=4∙2-7∙1=1.

Итак, получается х=1; у=2.

А это значит, что молочный шоколад лежит в коробке по 1 штуке, а горький по 2 штуки.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ ДИОФАНТОВЫХ УРАВНЕНИЙ.

Неожиданно, лет 20-30 назад, было осознано, что эту чисто абстрактную теорию можно использовать для построения алгоритмов, которые нужны для криптографии, чтобы зашифровывать и безопасно передавать секретные сообщения, а также снимать и класть деньги в банкоматах и т. п. Теория эта оказалась востребована на практике.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ ДИОФАНТОВЫХ УРАВНЕНИЙ.

Знаменитый мост «Золотые Ворота», находящийся в Сан-Франциско был построен с применением теории диофантовых уравнений.

Я узнала, что такое алгоритм Евклида и диофантовы уравнения. Научилась находить наибольший общий делить чисел несколькими способами и рассмотрела задачи, которые можно решить, составив диофантово уравнение.

Выявила, где в наше время можно встретить диофантовы уравнения.

Оцените статью
Добавить комментарий

Adblock
detector