Разложение арксинуса в ряд тейлора

Ряд Тейлора — разложение функции в бесконечную сумму степенных функций.

Ряд Тейлора применяют для апроксимации функции многочленами. То есть, линеаризация уравнений проходит путем разложения в ряд Тейлора и отсечения каждого члена старше 1-го порядка.

Определение ряда Тейлора.

Функция f(x) бесконечно дифференцируется в некоторой окрестности т.a:

Этот ряд называется рядом Тейлора функции f в т.a.

Т.е., рядом Тейлора функции f(x) в окрестности точки a является степенной ряд относительно двучлена x — a типа:

Свойства ряда Тейлора.

Если f есть аналитическая функция во всякой точке a, то ряд Тейлора этой функции во всякой точке a области определения f сходится к f в некоторой окрестности a.

Есть бесконечно дифференцируемые функции, ряд Тейлора которых сходится, однако, при этом отличается от функции во всякой окрестности a. Вариант, предложенный Коши:

У этой функции каждые производные в 0 равны нулю, поэтому коэффициенты ряда Тейлора в точке a=0 равны 0.

Если у функция f(x) есть непрерывные производные вплоть до (n+1)-го порядка, то эту функцию можно разложить в степенной ряд по формуле Тейлора:

где Rn − остаточный член в форме Лагранжа определяют так:

Если это разложение сходится в некотором интервале x, т.е. , значит, оно является рядом Тейлора, который представляет разложение функции f (x) в т.a.

Если a = 0, значит, это разложение является рядом Маклорена:

Ряды Маклорена некоторых функций.

1. Экспонента: ,

III. Разложение арксинуса. Рассмотрим в заключение вопрос о разложении функции arcsin x в ряд по степеням x. Непосредственное составление ряда Тейлора здесь было бы затруднительно, ввиду весьма громоздких выражений последовательных производных arcsin x. Использование биноминального ряда позволяет обойти эту трудность. Именно, как видели выше,

Заменим здесь x на —z, а затем z на x 2 , что дает

Интегрируя это равенство по промежутку [0, x], где -1 * , мы должны будем изменить и ряд теорем анализа?

На самом деле результаты анализа от выбора той или иной геометрии не зависят, а тригонометрические функции можно определить и изучить, совершенно не используя никаких геометрических соображений. Здесь имеем в виду вкратце показать, как это можно сделать.

Рассмотрим два степенных ряда

(78)

(79)

Пользуясь признаком Даламбера, легко показать, что каждый из этих рядов сходится при всех действительных x. Обозначим суммы этих рядов соответственно через ** C(x) и S(x) и назовем их косинусом и синусом аргумента x. Таким образом,

Читайте также:  Smart zero fan что это

Из этих формул сразу видно, что

т. е. что косинусфункция четная, а синуснечетная.

* Как известно, в геометрии Лобачевского нет подобных фигур. В то же время теория подобия лежит в основе обычного построения тригонометрии.

** Как мы знаем, эти суммы суть cos x и sin x. Поэтому мы могли бы и обозначить их этими символами. Однако мы предпочитаем обозначения C(x) и S(x), чтобы незаметно не использовать каких-либо привычных, но еще не обоснованных аналитически, свойств этих функций.

Метод решения

Одним из самых мощных методов раскрытия неопределенностей и вычисления пределов является разложение функций в степенной ряд Тейлора. Применение этого метода состоит из следующих шагов.
1) Приводим неопределенность к виду 0/0 при переменной x , стремящейся к нулю. Для этого, если требуется, выполняем преобразования и делаем замену переменной.
2) Раскладываем числитель и знаменатель в ряд Тейлора в окрестности точки x = 0 . При этом выполняем разложение до такой степени x n , которая необходима для устранения неопределенности. Остальные члены включаем в o ( x n ) .

Этот метод применим, если после выполнения пункта 1), функции в числителе и знаменателе можно разложить в степенной ряд.

Выполнять разложение сложных функций и произведения функций удобно по следующей схеме. А) Задаемся показателем степени n , до которого мы будем проводить разложение.
Б) Применяем приведенные ниже формулы разложения функций в ряд Тейлора, сохраняя в них члены до включительно, и отбрасывая члены с при , или заменяя их на .
В) В сложных функциях делаем замены переменных так, чтобы аргумент каждой ее части стремился к нулю при . Например,
.
Здесь при . Тогда можно использовать разложение функции в окрестности точки .

Примечание. Разложение функции в ряд Тейлора, в окрестности точки , называется рядом Маклорена. Поэтому для применяемых в наших целях рядов уместны оба названия.

Определение и доказательство свойств о малого приводится на странице: «О большое и о малое. Сравнение функций». Здесь мы приводим свойства, используемые при решении пределов разложением в ряд Маклорена (то есть при ).

Далее m и n – натуральные числа, .
;
;
, если ;
;
;
;
, где ;
, где c ≠ 0 – постоянная;
.

Читайте также:  Время работы компрессора холодильника атлант

Для доказательства этих свойств нужно выразить о малое через бесконечно малую функцию:
, где .

Разложение элементарных функций в ряд Тейлора (Маклорена)

Далее приводятся разложения элементарных функций в степенной ряд при . Как мы упоминали ранее, ряд Тейлора в окрестности точки называется рядом Маклорена.

Примеры

Все примеры Далее мы приводим подробные решения следующих пределов с помощью ряда Тейлора.
⇓, ⇓, ⇓, ⇓, ⇓.

Пример 1

Все примеры ⇑ Вычислить предел последовательности, используя разложение в ряд Тейлора.
.

Это неопределенность вида бесконечность минус бесконечность. Приводим ее к неопределенности вида 0/0 . Для этого выполняем преобразования.

.
Здесь мы учли, что номер элемента последовательности n может принимать только положительные значения. Поэтому . Делаем замену переменной . При . Будем искать предел считая, что x – действительное число. Если предел существует, то он существует и для любой последовательности , сходящейся к нулю. В том числе и для последовательности .

.
Раскладываем функцию в числителе в ряд Тейлора. Применяем формулу:
.
Оставляем только линейный член.
.
.
Здесь мы учли, что поскольку существует двусторонний предел , то существуют равные ему односторонние пределы. Поэтому .

Пример 2

Все примеры ⇑ Показать, что значение второго замечательного предела можно получить, используя разложение в ряд Тейлора.

Делаем замену переменной . Тогда . При . Подставляем.
.

Для вычисления предела можно считать, что значения переменной t принадлежат любой, наперед выбранной, проколотой окрестности точки . Мы полагаем, что . Используем то, что экспонента и натуральный логарифм являются обратными функциями по отношению друг к другу. Тогда
.

Вычисляем предел в показателе, используя следующее разложение в ряд Тейлора:
.
.

Поскольку экспонента является непрерывной функцией для всех значений аргумента, то по теореме о пределе непрерывной функции от функции имеем:
.

Пример 3

Все примеры ⇑ Вычислить предел, используя разложение в ряд Тейлора.
.

Это неопределенность вида 0/0 . Используем следующие разложения функций в окрестности точки :
;
;
.

Раскладываем с точностью до квадратичных членов:
;
.
Делим числитель и знаменатель на и находим предел:
.

Пример 4

Все примеры ⇑ Решить предел с помощью ряда Тейлора.
.

Легко видеть, что это неопределенность вида 0/0 . Раскрываем ее, применяя разложения функций в ряд Тейлора. Используем приведенное выше разложение для гиперболического синуса ⇑:
(П4.1) .
В разложении экспоненты, заменим x на –x :
(П4.2) .
Далее, – сложная функция. Сделаем замену переменной . При . Поэтому мы можем используем разложение натурального логарифма в окрестности точки . Используем приведенное выше разложение, в котором переименуем переменную x в t :
(П4.3) .

Читайте также:  Можно ли приклеить тачскрин на клей момент

Заметим, что если бы у нас была функция , то при . Поэтому подставить в предыдущее разложение нельзя, поскольку оно применимо в окрестности точки . В этом случае нам потребовалось бы выполнить следующее преобразование:
.
Тогда при и мы могли бы применить разложение (П4.3).

Попробуем решить предел, выполняя разложение до первой степени переменной x : . То есть оставляем только постоянные члены, не зависящие от x : , и линейные . Остальные будем отбрасывать. Точнее переносить в .
;
;
.
Поскольку , то в разложении логарифма мы отбрасываем члены, начиная со степени 2. Применяя, приведенные выше свойства о малого имеем:

.
Подставляем в предел:

.
Мы снова получили неопределенность вида 0/0 . Значит разложения до степени не достаточно.

Если мы выполним разложение до степени , то опять получим неопределенность:
.

Выполним разложение до степени . То есть будем оставлять только постоянные члены и члены с множителями . Остальные включаем в .
;
;

;

.
Далее замечаем, что . Поэтому в разложении логарифма нужно отбросить члены, начиная со степени , включив их в . Используем разложение (П4.3), заменив t на :

.

Подставляем в исходную функцию.

.
Находим предел.
.

Пример 5

Все примеры ⇑ Найти предел с помощью ряда Тейлора.
.

Будем проводить разложение числителя и знаменателя в ряд Маклорена до четвертой степени включительно.

Теперь переходим к числителю. При . Поэтому сделать подстановку и применить разложение для нельзя, поскольку это разложение применимо при , а у нас . Заметим, что . Поэтому выполним преобразование.
.
Теперь можно сделать подстановку , поскольку при .

Разложим функцию и ее степени в ряд Тейлора в окрестности точки . Применяем приведенное выше разложение ⇑.
;
;

;
;
;
;
Далее заметим, что . Поэтому, чтобы получить разложение сложной функции с точностью до , нам нужно разложить с точностью до .

Разложим второй логарифм. Приводим его к виду , где при .
,
где .

Разложим z в ряд Тейлора в окрестности точки с точностью до .
Применим разложение синуса ⇑:
.
Заменим x на :
. Тогда
;

;
Заметим, что . Поэтому, чтобы получить разложение сложной функции с точностью до , нам нужно разложить с точностью до .

Раскладываем с точностью до и учитываем, что .

;
.

Подставляем разложение числителя и знаменателя и находим предел.
;
.

Использованная литература:
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.

Автор: Олег Одинцов . Опубликовано: 29-04-2019

Оцените статью
Добавить комментарий

Adblock
detector