Multi thread ratio что это

Одновременная многопоточность [1] (англ. Simultaneous Multithreading — SMT) — одна из двух главных форм многопоточности, которая может быть реализована в процессорах аппаратно. Второй формой является временная многопоточность. Технология одновременной многопоточности позволяет исполнять инструкции из нескольких независимых потоков выполнения на множестве функциональных модулей суперскалярного микропроцессора в одном цикле.

Содержание

Сравнение с другими технологиями [ править | править код ]

Производительность суперскалярных микропроцессоров увеличивается за счёт одновременного исполнения нескольких инструкций в одном цикле, однако она ограничивается зависимостями между инструкциями (которые ограничивают возможности параллельного исполнения, в результате чего в цикле может исполняться не максимально возможное количество инструкций) и операциями с большой задержкой внутри одного потока выполнения (которые приводят к появлению циклов, в которых не исполняется ни одна инструкция — pipeline stalls).

Архитектуры с аппаратной многопоточностью выполняют несколько потоков с возможностью быстрого переключения контекста между ними. Такая «традиционная» многопоточность скрывает задержки памяти и функциональных модулей (снижая количество «пустых» циклов), хотя в каждом конкретном цикле исполняются инструкции из одного потока. Однако увеличение количества одновременно исполняемых инструкций снижает возможности традиционной многопоточности.

Одновременная многопоточность объединяет параллельное исполнение инструкций суперскалярной архитектуры с аппаратной многопоточностью. Применение одновременной многопоточности, благодаря динамическому распределению функциональных модулей процессора между потоками, увеличивает использование процессора при наличии задержек памяти и ограниченной возможности параллельного исполнения инструкций внутри потока.

Многоядерные микропроцессоры по своей организации наиболее близки к микропроцессорам с одновременной многопоточностью — имеют несколько наборов регистров, несколько функциональных модулей и суперскалярность каждого из ядер. Главное отличие между ними заключается в распределении ресурсов — в многоядерном процессоре каждый поток получает фиксированное количество функциональных модулей процессора, тогда как в процессоре с одновременной многопоточностью распределение модулей изменяется в каждом цикле. Вследствие этого процессоры с одновременной многопоточностью показывают большую производительность при максимальной загрузке потоками, а при снижении количества потоков производительность падает медленней, по сравнению с многоядерным процессором.

История и реализации [ править | править код ]

Впервые одновременная многопоточность была представлена в исследовательских работах Дина Таллсена (Dean Tullsen) в 1995 г. (Калифорнийский университет в Сан-Диего) [2] [3] [4] [5] .

Первым процессором с реализацией одновременной многопоточности мог бы стать микропроцессор Alpha 21464 компании DEC, который был объявлен в 1999 году. Процессор разрабатывался командой под руководством главного архитектора Джоэла Эмера ( англ. ) . Процессор был одноядерным, суперскалярным с 8 конвейерами, имел 4 комплекта регистров для переключения контекста и мог потенциально выполнять 4 потока одновременно. 2-кратное увеличение производительности получалось всего лишь за счет 10%-ного увеличения количества логических элементов. Во многом процессор воплощал предложения и подходы, изложенные в работах Дина Таллсена, соавтором чьих работ выступали некоторые члены команды «Alpha» (Джоэл Емер и Ребекка Штамм (Rebecca Stamm)). Однако Alpha 21464 так и не появился на рынке, он пал жертвой корпоративных слияний и поглощений [6] .

Читайте также:  Яндекс почта не загружает файлы

Таким образом первой реализацией одновременной многопоточности на рынке стала технология Hyper-threading компании Intel, представленная в 2002 г. в серверных процессорах Xeon и в Pentium 4 [7] (микроархитектура NetBurst).

Когда компания Intel обратилась к многоядерной архитектуре микропроцессоров, ради упрощения дизайна она не перенесла технологию Hyper-threading на новые процессоры. В результате первым многоядерным процессором с одновременной многопоточностью на каждом ядре стал процессор IBM POWER5 (2004 г.) [8] . В конце концов Intel вернула Hyper-threading в свои процессоры в архитектуре Nehalem (2008 г.) [9] .

CPU-Z рейтинг процессоров это возможность, которая позволяет протестировать ЦП установленный в компьютер. На основе полученных при проверке данных проанализировать состояние сравни его с другим типом или моделью CPU.

Как сравнить процессоры

Сравнение разделено на 5 шагов. Пользователь должен соблюдать все установленные действия для получения более точного результата. Чтобы получить точный анализ необходимо, чтобы был активен CPU-Z . Другие программы должны быть отключены. Если запущены сторонние процессы, это может сказаться на результате, и он будет ниже базового.

Шаг 1Переход во вкладку «Тест»

Сравнение начинается выборы вкладки «Тест». Открывается новое окно, где будут представлены на выбор параметры по настройке проведения анализа.

Шаг 2 Выбор потоков процессора

В этом окне нужно выполнить следующие действия:

  1. Определить способ тестирования по потокам.
  2. Поставить галочку напротив выбранного варианта.
  3. Подтвердить своё действие.

Дальше необходимо переходить к следующему шагу.

Шаг 3 Выбор логических процессоров

Следует установить количество логических процессоров. По умолчанию доступно число в базовом значении. Если процессор имеет 4 или 6 ядер, то проверку можно проводить по 2 ядрам или 3.

Шаг 4 Выбор эталона

Выбор эталона ответственное действие. Оно позволяет выделить нужный процессор из предлагаемого списка. Подобрав нужную модель система автоматически установит уже имеющийся при тестировании результат по максимальным частотам.

Шаг 5 Запуск классического или стресс теста

Доступно несколько вариантов тестирования. Это может быть:

  1. Классический тест в 3 этапа.
  2. Стресс тест.

Последний вариант позволяет определить пиковые нагрузки на процессор и сравнить эти показатели с эталонными по выбранной модели.

Читайте также:  Gross beat как пользоваться

Заключение

Пошаговое руководство даёт возможность пользователям при необходимости протестировать любой тип процессоров установленных в персональном компьютере или ноутбуке и сравнить полученные данные с эталонным образцом. Это позволит понять, какая из действующих моделей отличается больше производительность и пропускной способностью. Такие тесты полезны при настройке и разгоне ЦП через системные утилиты. CPU-Z поможет отследить все изменения устройства при разгоне.

В процессорах Intel технология многопоточности называется Hyper-Threading (HT), в процессорах AMD — Simultaneous MultiThreading (SMT).

Кроме названий, эти технологии отличаются еще и многими аспектами реализации. Однако, суть их одинакова. HT и SMT повышают эффективность использования вычислительных возможностей процессора за счет параллельного выполнения каждым его ядром двух потоков вычислений.

Ядра мультипоточного процессора содержат по два контроллера прерываний и набора регистров. Операционная система компьютера каждое такое физическое ядро воспринимает как два логических ядра.

В большинстве приложений HT и SMT значительно повышают быстродействие процессора. Однако, их эффективность зависит как от самой технологии, так и от используемого программного обеспечения.

Наличие Hyper-Threading в процессоре Intel предполагает, что один из потоков вычислений, обрабатываемых его ядром, является основным. Второй поток выполняется только в те периоды времени, когда ресурсы ядра по каким-то причинам не полностью заняты или временно не заняты основным потоком (оста́точный принцип). В некоторых случаях, на второй поток может приходиться до 50% ресурсов ядра. Но такое бывает не часто. В приложениях, в которых основной поток эффективно использует ядро, пользы от Hyper-Threading будет значительно меньше. В среднем, этот показатель составляет около 20-30%. В процессоре без Hyper-Threading эти ресурсы попросту не используются.

Результаты тестов дают основания считать, что алгоритм работы Simultaneous MultiThreading, используемый в процессорах AMD, отличается от Hyper-Threading в сторону большего равноправия обоих потоков. В одних приложениях это себя оправдывает (рендеринг), в других — приводит к снижению производительности (видеоигры).

Однако, технологии мультипоточности, а также использующее их программное обеспечение, постоянно совершенствуются, становясь все более эффективными. Процессор с поддержкой HT или SMT — однозначно более предпочтительный вариант, чем аналогичный процессор без них. Ну а на случай, если в каком-то важном приложении мультипоточность будет негативно влиять на быстродействие, в BIOS компьютера предусмотрена возможность ее отключения.

Люди обычно оценивают процессор по количеству ядер, тактовой частоте, объему кэша и других показателях, редко обращая внимание на поддерживаемые им технологии.

Отдельные из этих технологий нужны только для решения специфических заданий и в "домашнем" компьютере вряд ли когда-нибудь понадобятся. Наличие же других является непременным условием работы программ, необходимых для повседневного использования.

Читайте также:  Как написать текст полукругом в paint

Так, полюбившийся многим браузер Google Chrome не работает без поддержки процессором SSE2. Инструкции AVX могут в разы ускорить обработку фото- и видеоконтента. А недавно один мой знакомый на достаточно быстром Phenom II (6 ядер) не смог запустить игру Mafia 3, поскольку его процессор не поддерживает инструкции SSE4.2.

Если аббревиатуры SSE, MMX, AVX, SIMD вам ни о чем не говорят и вы хотели бы разобраться в этом вопросе, изложенная здесь информация станет неплохим подспорьем.

В таблицу можно одновременно добавить до 6 процессоров, выбрав их из списка (кнопка "Добавить процессор"). Всего доступно больше 2,5 тыс. процессоров Intel и AMD.

Пользователю предоставляется возможность в удобной форме сравнивать производительность процессоров в синтетических тестах, количество ядер, частоту, структуру и объем кэша, поддерживаемые типы оперативной памяти, скорость шины, а также другие их характеристики.

Дополнительные рекомендации по использованию таблицы можно найти внизу страницы.

В этой базе собраны подробные характеристики процессоров Intel и AMD. Она содержит спецификации около 2,7 тысяч десктопных, мобильных и серверных процессоров, начиная с первых Пентиумов и Атлонов и заканчивая последними моделями.

Информация систематизирована в алфавитном порядке и будет полезна всем, кто интересуется компьютерной техникой.

Таблица содержит информацию о почти 2 тыс. процессоров и будет весьма полезной людям, интересующимся компьютерным "железом". Положение каждого процессора в таблице определяется уровнем его быстродействия в синтетических тестах (расположены по убыванию).

Есть фильтр, отбирающий процессоры по производителю, модели, сокету, количеству ядер, наличию встроенного видеоядра и другим параметрам.

Для получения подробной информации о любом процессоре достаточно нажать на его название.

Проверка стабильности работы центрального процессора требуется не часто. Как правило, такая необходимость возникает при приобретении компьютера, разгоне процессора (оверлокинге), при возникновении сбоев в работе компьютера, а также в некоторых других случаях.

В статье описан порядок проверки процессора при помощи программы Prime95, которая, по мнению многих экспертов и оверлокеров, является лучшим средством для этих целей.

Название модели обычно наносится производителем прямо на процессор. Так что если он пока еще не установлен в сокет материнской платы и не прикрыт сверху системой охлаждения, получить необходимые сведения можно из маркировки на его крышке.

Ну а если процессор уже стоит в системном блоке, узнать его модель можно несколькими способами. Некоторые из них работают только в Windows. Другие — подходят для случаев, когда Windows на компьютере отсутствует или не запускается.


ПОКАЗАТЬ ЕЩЕ

Оцените статью
Добавить комментарий

Adblock
detector